Oral chemotherapy in advanced breast cancer: expert perspectives on its role in clinical practice

Fatima Cardosoa,*, Marco Colleonib, Angelo Di Leo5, Giulio Franciad, Alessandra Gennari5, Joseph Gligorovf, Antonio Llombartg

a Breast Unit, Champalimaud Clinical Center, Av. De Brasilia-Doca de Pedrouços 1400-048 Lisbon, Portugal
b Division of Medical Senology, European Institute of Oncology and International Breast Cancer Study Group, Milan, Italy
cIstituto Toscano Tumori, Hospital of Prato, Prato, Italy
dUniversity of Texas at El Paso, Border Biomedical Research Center, El Paso, Texas, United States
e Galliera Hospital, Via Volta, 6, 16128, Genoa, Italy
f APHP-Tenon, IUC-UPMC, Sorbonne University, 4 rue de la chine, Paris, France
gDepartment of Medical Oncology, Hospital Arnau de Vilanova, Valencia, Spain

KEYWORDS
Breast cancer
Metastatic
Chemotherapy
Oral drug administration
Vinorelbine
Capecitabine
Metronomic drug administration
Safety
Quality of life
Patient selection

ABSTRACT
Metastatic breast cancer (MBC) is quite sensitive to chemotherapy, with patients often benefiting from multiple lines of treatment. Continuation of chemotherapy until disease progression, if tolerable, prolongs disease control and improves patient outcomes. Compared to combination regimens, sequential single-agent chemotherapy provides similar efficacy and improved tolerability and may represent the preferred option for most patients. Numerous agents are available, but there are few data to advise optimal sequencing. Oral chemotherapeutic agents, including capecitabine and vinorelbine, have demonstrated significant efficacy in patients with MBC. These drugs prolong disease control with good tolerability, especially when used as single agents. In addition, oral chemotherapy reduces the time and cost associated with treatment and usually is preferred by patients if compared with intravenous delivery. Metronomic administration of oral chemotherapy also represents a promising therapeutic approach for select patients with MBC, inhibiting tumor progression through multiple mechanisms of action. Ongoing clinical trials are exploring metronomic regimens as a strategy to prolong disease control with favorable tolerability. Key data on the role for oral chemotherapy in the therapeutic landscape for MBC will be reviewed and accompanied by expert perspectives on important considerations for the integration of oral chemotherapeutic agents into the treatment of patients with MBC.

Introduction
Despite substantial progress in the treatment of breast cancer, advanced disease is incurable and the goals of therapy consist of prolonging survival where possible but, most importantly, palliating symptoms and optimizing quality of life (QoL) [1–3]. Multiple parameters influence treatment choices for patients with metastatic breast cancer (MBC), including tumor biology, extent of disease, previous therapies, age, performance status, comorbidities, patient preference, and drug availability [1,2].

The role for oral chemotherapy in MBC was explored in two discussion forums held in San Antonio in December 2014 and December 2015. An expert faculty of breast medical oncology thought leaders and clinical experts from across Europe were invited to each interactive workshop to review the chemotherapy options for MBC and the potential role of oral cytotoxic agents in providing effective palliation. In addition to discussion around didactic state of the art presentations from the authors, the attendees discussed the management of case scenarios to help identify the place of oral chemotherapy in MBC. The following is a summary of these discussions and highlights important considerations in selecting oral chemotherapeutic agents for the management of patients with MBC. Support for both discussion forums and this manuscript was provided by an unrestricted educational grant from Pierre Fabre Medicament. The views expressed are those of the authors and were not influenced by the company.

Current therapeutic landscape for metastatic breast cancer
The ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2) recommend that treatment choice is driven by many factors, such as biology (hormonal receptor and HER2 expression), patient characteristics (age, comorbidities, menopausal status), and patient preferences, among others [1,2]. For triple-negative breast cancer (TNBC) lacking therapeutic targets, chemotherapy is the mainstay of treatment [1,2]. Decisions regarding
optimal selection, sequencing, and duration of therapy for patients with advanced breast cancer continue to evolve. For those with HER2-positive disease, HER2 blockade is the backbone of treatment. Combination strategies with HER2-targeted agents are most often employed, such as combinations with IV or oral chemotherapy or endocrine therapy [1,2,4].

In patients with endocrine-sensitive, HER2-negative disease, endocrine therapy alone is preferred with increasing options for both sequential endocrine treatments alone and in combination with targeted agents such as everolimus [1,2] and (at the time of this discussion forum only in the United States) palbociclib [5]. However, endocrine resistance typically occurs and nearly all patients will receive chemotherapy during the disease course [1,2]. Resistance to endocrine therapy has lacked a clear definition, complicating treatment decisions in this patient subset. The ABC2 consensus guidelines define primary endocrine resistance as a relapse while on the first 2 years of adjuvant endocrine therapy, or progressive disease within the first 6 months of first-line endocrine therapy for MBC while on endocrine therapy [1,2]. Secondary (acquired) endocrine resistance is defined as a relapse while on adjuvant endocrine therapy but after the first 2 years, or a relapse within 12 months of completing adjuvant endocrine therapy, or progressive disease at least 6 months after initiating endocrine therapy for MBC while still on endocrine therapy. Chemotherapy should be considered when there is concern regarding endocrine resistance and for those with immediately life-threatening and/or highly symptomatic disease.

Numerous chemotherapeutic agents have demonstrated efficacy in patients with HER2-negative MBC, including oral agents and formulations [3].

Chemotherapy in metastatic breast cancer: considerations for therapy selection, sequencing, and duration

While the treatment of MBC is primarily palliative, strategies to optimize therapy and prolong survival remain important [1–3]. MBC is quite sensitive to chemotherapy, but with a large variation in the probability of response according to treatment factors and patient and disease features. Although duration of treatment and response often diminish as the number of lines of therapy increase, many patients will respond to multiple lines of chemotherapy well beyond the first-line regimen [6,7]. However, uncertainty remains regarding the best sequence of therapies as well as the optimal duration of therapy.

Meta-analyses and review of randomized clinical trial data demonstrate comparable efficacy, including overall survival (OS), for sequential versus combination chemotherapy [8,9]. In addition, sequential single-agent chemotherapy is associated with fewer adverse events, which can positively impact QoL. Based on similar efficacy, with better tolerability and QoL, current guidelines state that sequential single-agent chemotherapy is preferred over combination chemotherapy [1–3]. However, because combination regimens are associated with more rapid and higher probability of objective response, they may be needed for patients with rapidly progressing or life-threatening disease or highly symptomatic metastases.

Chemotherapy treatment selection should be based on previous chemotherapy exposure and response, side effect profile, comorbid conditions, and patient preference [1,2]. Chemotherapy selection is currently not tailored to tumor molecular profiles [1–3], with the possible exception of platinum agents for BRCA-associated cancers [1,2,10]. Numerous chemotherapeutic agents are available and have demonstrated efficacy in MBC, but there are few data from randomized clinical trials to advise on optimal sequencing of agents and this will be influenced by the use and type of adjuvant chemotherapy the patient has previously received, the treatment free interval and patient preferences [1–3]. Many patients will have received adjuvant anthracyclines with or without a taxane. Although patients with MBC may be rechallenged with an alternative anthracycline-based regimen if there is a long disease-free interval, different classes of agents are often preferred [1,2]. Taxanes remain an important first-line therapy for MBC in patients who are taxane-naive or have disease progression more than 12 months after completion of adjuvant therapy with many clinicians using a different taxane or schedule to that used in the adjuvant setting.

Alternative choices for first-line therapies, and endorsed by the ABC2 guidelines [1,2], include single-agent capecitabine, vinorelbine, or eribulin. Specifically, eribulin demonstrated a survival benefit over the physicians’ treatment of choice in heavily pretreated patients with MBC in the phase III EMBRACE trial (median OS 13.1 vs 10.6 months, hazard ratio [HR] 0.81; P = 0.041) [11]. A phase III study directly comparing eribulin to capecitabine as first-, second-, or third-line therapy in patients with anthracycline- and taxane-pre-treated MBC did not show superiority for eribulin, with similar median OS (15.9 for eribulin vs 14.5 months for capecitabine, HR 0.88; P = 0.056) and progression-free survival (PFS: 4.1 vs 4.2 months, HR 1.08; P = 0.30) for both agents [12]. Gemcitabine, liposomal anthracyclines, nab-paclitaxel, platinum agents, ixabepilone, and clinical trial enrollment represent other treatment options for advanced disease, although ixabepilone is not available outside the United States [1–3].

Chemotherapy duration and the use of maintenance therapy remains an area of debate among clinicians. Continuation of chemotherapy until disease progression, if well tolerated, should be considered when prolonged disease control may be beneficial [1–3]. This is supported by data from a meta-analysis showing that a longer duration of first-line chemotherapy resulted in a significant PFS benefit (HR 0.64; P < 0.001) and OS (HR 0.91; P = 0.046) compared to shorter chemotherapy schedules [13]. However, given the modest improvement in OS, prolonged exposure to chemotherapy should be balanced against adverse events and QoL. Short breaks and flexibility in treatment schedule should also be considered for selected patients in remission [1–3]. Maintenance chemotherapy usually consists of continuing the same treatment dose and schedule until disease progression [14]. However, switch maintenance strategies are also under investigation and may improve OS and/or PFS, as demonstrated in the recent phase III IMELDA and TANIA trials of bevacizumab with or without chemotherapy [15,16]. For those with hormone receptor–positive breast cancer, maintenance endocrine therapy can be utilized after response to initial chemotherapy [17,18]. Ongoing studies are also exploring alternative dosing strategies, including metronomic dosing strategies, which are discussed in further detail below [19].

The role for oral chemotherapy in metastatic breast cancer

The concept that MBC is a treatable but still generally incurable disease reinforces the importance of balancing disease control with the detrimental effects that can be associated with prolonged chemotherapy exposure and very limited survival benefit [3]. Thus, it is important to discuss all treatment options with patients with MBC and evaluate the risk-to-benefit ratio, reflecting the treatment goals of improving both length and quality of life [1–3]. The needs of the patient and their personal preferences and expectations are important factors in treatment selection and acceptance of a therapeutic plan. Alternative dosing schedules and more convenient routes of administration, such as oral agents, should be considered, while ensuring that treatment is associated with low levels of cumulative toxicity. Numerous oral therapies are now available for the treatment of MBC, including chemotherapeutic agents and targeted agents. While oral targeted therapies such as lapatinib, everolimus, and palbociclib are improving patient outcomes, detailed discussion of these agents is beyond the scope
of this manuscript, which focuses specifically on the role for oral chemotherapies in MBC.

In comparison to standard intravenous (IV) chemotherapy, oral chemotherapy provides patients with more convenience and allows clinicians to more easily tailor therapy dosing if needed [20]. In addition, less time in the clinic is required, which translates into cost and staffing savings. Surveys demonstrate that most patients prefer oral therapy to IV treatments when equivalent efficacy is established [21,22]. However, oral chemotherapy is not free from potentially dangerous side-effects, and so it is essential from a safety perspective to have effective patient education and follow-up, as well as simple dosing schedules [20]. Dosing mistakes, such as patients forgetting the treatment breaks commonly used with some therapies (i.e., 2 weeks on, 1 week off for capecitabine) or taking the wrong number of pills can negatively affect both efficacy and tolerability. Adherence can be a concern and is influenced by multiple factors, including complex treatment regimens, requirement for substantial behavioral changes, inconvenient or inefficient clinics, poor communication by healthcare providers, gastrointestinal side-effects or abdominal pathology, and history of mental illness [23,24]. Improper handling or storage of oral medications can also be a problem, compromising the effectiveness of the medication [25]. Providing continuous patient education throughout the treatment course can help prevent these issues and improve efficacy, QoL, and compliance.

Both capecitabine and vinorelbine have demonstrated considerable efficacy and tolerability in MBC, particularly as second-line and third-line therapy after taxane failure. Capecitabine has demonstrated efficacy in multiple phase III trials, while the data supporting oral vinorelbine is currently limited to phase II studies [26,27]. A systematic review of over 2000 patients pretreated with anthracyclines and taxanes who received single-agent chemotherapy with capecitabine or IV vinorelbine supported the efficacy of these chemotherapeutic agents, producing mean disease control rates (overall response plus stable disease) of approximately 55% and 50%, respectively [28].

As a single-agent, capecitabine has yielded median PFS or time to progression (TTP) ranging from 3.0 months to 7.9 months in patients with MBC (Table 1) [29–40]. In a recent review of 31 studies of oral vinorelbine in over 1000 patients with MBC, this agent demonstrated good efficacy and tolerability, both as monotherapy and in combination with capecitabine or targeted therapy [27]. As a single-agent, oral vinorelbine was associated with a median PFS or TTP of 4.0 months to 8.2 months (Table 2) [27,41–46]. The combination of oral vinorelbine with capecitabine is also effective, yielding median PFS or TTP ranging from 3.4 to 10.5 months in patients with MBC (Table 3) [27,47–54]. There is no direct comparison between the use of these two agents in combination as opposed to in sequence. The combination is more complex, related to a significant incidence of side effects, and should be reserved for selected cases (e.g., highly symptomatic patients). Based on the available data, the current ABC2 guidelines identify single-agent capecitabine, vinorelbine, or eribulin as the preferred choices for patients who have previously received anthracyclines and taxanes and do not require combination chemotherapy [1,2].

In patients with HER2-positive MBC, both capecitabine and IV vinorelbine have demonstrated efficacy and tolerability in combination with HER2-targeted agents. Capecitabine is effective in combination with trastuzumab and lapatinib, with median TTP of 8.2 months and 6.2 months, respectively in patients with HER2-positive MBC after progression on first-line trastuzumab and chemotherapy [55,56]. Intravenous vinorelbine has also demonstrated efficacy in HER2-positive disease, demonstrating similar or better response rates and median TTP than taxanes when combined with trastuzumab as first-line chemotherapy in the phase III TRAVIOTA and HERNATA trials (Table 4) [57,58]. Additionally, in a retrospective comparison of two case series, oral vinorelbine in combination with trastuzumab appeared to be at least as effective as a standard taxane and trastuzumab combination [59]. The efficacy associated with vinorelbine plus trastuzumab, together with a good tolerability profile, makes this combination an important option for the treatment of HER2-positive MBC. Promising phase II data also exist for the safety and activity of the combination of vinorelbine with both trastuzumab and pertuzumab [60].

Metronomic chemotherapy in metastatic breast cancer

The tolerability and convenience of oral chemotherapy makes it an ideal formulation for metronomic dosing approaches. Metronomic chemotherapy consists of frequent administration of chemotherapy (often daily) at individual doses well below the maximum tolerated dose (MTD) without prolonged drug-free use of the chemotherapeutic agent. This approach aims to maintain a continuous presence of the drug at the tumor site to achieve effective drug delivery while minimizing toxic side-effects and promoting minimal discontinuation of therapy. The rationale behind metronomic chemotherapy is based on the notion that continuous exposure to low-dose chemotherapy can inhibit tumor cell proliferation, induce cell apoptosis, block angiogenesis, and thereby achieve tumor regression.

This method of dosing is particularly attractive for patients with metastatic breast cancer, as it offers several potential advantages. Metronomic chemotherapy can provide sustained control of tumors, reducing the risk of disease progression and enhancing overall survival. Additionally, it may improve quality of life (QoL) by minimizing symptoms associated with drug discontinuation and minimizing the need for hospitalization. Furthermore, this approach allows for better management of side-effects, potentially improving patient adherence to treatment.

Despite these potential benefits, metronomic chemotherapy also presents challenges. The optimal dosing schedule and drug selection require careful consideration to ensure effective tumor control while minimizing side-effects. This approach requires close monitoring and adjustment of dosage to account for individual patient responses and toxicities. Moreover, the lack of randomized controlled trials specifically comparing metronomic chemotherapy to standard regimens hinders the definitive evaluation of its efficacy and safety profile. Nevertheless, ongoing clinical trials are continually exploring the potential benefits and limitations of metronomic chemotherapy in the context of metastatic breast cancer.

In summary, oral therapies, including capecitabine and vinorelbine, have demonstrated notable efficacy and tolerability in the treatment of metastatic breast cancer. These agents can be administered in various schedules, including continuous dosing, resulting in improved patient convenience and adherence. The combination of these agents with targeted therapies further enhances therapeutic outcomes, offering a promising approach to the management of drug-resistant diseases. The future of chemotherapy in metastatic breast cancer will continue to evolve as new treatments and strategies are developed to improve patient outcomes, quality of life, and overall survival.
breaks [61,62]. This approach offers several advantages, including low economic costs, oral administration, good tolerability, positive patient perception, and efficacy based on data from phase II and phase III clinical trials [63].

The mechanisms of action for metronomic chemotherapy are multi-targeted and remain to be fully elucidated. Possible mechanisms of action include inhibition of angiogenesis, stimulation of the immune system, and direct targeting of tumor cells (Figure 1) [61]. The antiangiogenic effects associated with metronomic chemotherapy are attributed to numerous mechanisms, such as direct targeting of tumor neovascularization, increased expression of the angiogenic inhibitor thrombospondin-1 [64], induction of apoptosis in circulating endothelial cells, and blockade of endothelial progenitor cell mobilization from the bone marrow [61,65–67]. Metronomic chemotherapy can also augment the antitumor immune response through a number of complex mechanisms. For instance, metronomic administration of chemotherapy stimulates apoptosis of immunogenic cells, depletion of regulatory T cells,

Table 2
Oral vinorelbine as a single agent in metastatic breast cancer [27,41–46]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Oral vinorelbine schedule</th>
<th>N</th>
<th>Line of treatment</th>
<th>ORR, %</th>
<th>CBR, %</th>
<th>PFS/TTP, months</th>
<th>OS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freyer et al. J Clin Oncol 2003 [41]</td>
<td>80 mg/m² weekly (after 3 administrations at 60 mg/m²)</td>
<td>58</td>
<td>1<sup>st</sup></td>
<td>31</td>
<td>62</td>
<td>4.2</td>
<td>Not reached</td>
</tr>
<tr>
<td>Amadori et al. ECCO 2001 [27,42]</td>
<td>80 mg/m² weekly (after 3 administrations at 60 mg/m²)</td>
<td>63</td>
<td>1<sup>st</sup></td>
<td>27</td>
<td>NR</td>
<td>4.6</td>
<td>21</td>
</tr>
<tr>
<td>Bartsch et al. ESMO 2008 [27,43]</td>
<td>60 mg/m² d1,8 q3w</td>
<td>100</td>
<td>1<sup>st</sup> - 4<sup>th</sup> Post anthra</td>
<td>25</td>
<td>51</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Blancas et al. ASCO 2010 [27,44]</td>
<td>60 mg/m² weekly</td>
<td>45</td>
<td>1<sup>st</sup> or 2<sup>nd</sup></td>
<td>29.5</td>
<td>59</td>
<td>4</td>
<td>NR</td>
</tr>
<tr>
<td>Mansour et al. IACT 2010 [27,45]</td>
<td>80 mg/m² d1,8 q3w (after 1 cycle at 60 mg/m²)</td>
<td>26</td>
<td>1<sup>st</sup> Post anthrax and/or txn</td>
<td>42</td>
<td>NR</td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td>Steger et al. ESMO 2014 [46]</td>
<td>80 mg/m² weekly (after 4 administrations at 60 mg/m²)</td>
<td>70</td>
<td>1<sup>st</sup> (bone mets)</td>
<td>NR</td>
<td>55.7</td>
<td>8.2</td>
<td>NR</td>
</tr>
</tbody>
</table>

Abbreviations: anthra, anthracycline; CBR, clinical benefit rate; NR, not reported; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; q3w, every 3 weeks; TTP, time to progression; txn, taxane

Table 3
Oral vinorelbine in combination with capecitabine in metastatic breast cancer [27,47–54]

<table>
<thead>
<tr>
<th>References</th>
<th>Oral vinorelbine + capecitabine schedule</th>
<th>N</th>
<th>Line of treatment</th>
<th>ORR, %</th>
<th>CBR, %</th>
<th>PFS/TTP, months</th>
<th>OS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubiana-Mathieu et al. BJC 2009 [47]</td>
<td>OV 80 mg/m² d1,8 (after 1<sup>st</sup> cycle at 60 mg/m²)</td>
<td>55</td>
<td>1<sup>st</sup></td>
<td>51</td>
<td>63</td>
<td>8.4</td>
<td>29</td>
</tr>
<tr>
<td>Nolè et al. Cancer Chemother Pharmacol 2009 [48]</td>
<td>OV 60 mg/m² d1,8,15 CAP 2000 mg/m²/d1-14, q3w</td>
<td>52</td>
<td>1<sup>st</sup></td>
<td>44.2</td>
<td>73.1</td>
<td>8.4</td>
<td>25.8</td>
</tr>
<tr>
<td>Campone et al. Breast J 2013 [49]</td>
<td>OV 80 mg/m² d1,8 CAP 2000 mg/m²/d1-14, q3w</td>
<td>44</td>
<td>1<sup>st</sup> Post anthra</td>
<td>31.8</td>
<td>70.5</td>
<td>7.2</td>
<td>22.2</td>
</tr>
<tr>
<td>Tawfik et al. Cancer Chemother Pharmacol 2013 [50]</td>
<td>OV 60 mg/m² d1,8 CAP 2000 mg/m²/d1-14, q3w</td>
<td>28</td>
<td>1<sup>st</sup> Post anthra and/or txn</td>
<td>57.1</td>
<td>76.5</td>
<td>8.6</td>
<td>27.2</td>
</tr>
<tr>
<td>Finek et al. Anticancer Res 2009 [51]</td>
<td>OV 60 mg/m² d1,8 CAP 2000 mg/m²/d1-14, q3w</td>
<td>115</td>
<td>1<sup>st</sup> or 2<sup>nd</sup> Post anthra</td>
<td>56.5</td>
<td>87.8</td>
<td>10.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Delcambre et al. SABCS 2005 [52]</td>
<td>OV 60 mg/m² d1,8 CAP 2500 mg/m²/d1-14, q3w</td>
<td>31</td>
<td>1<sup>st</sup>; 90% CAP 2500 mg/m²/d1-14, q3w</td>
<td>61</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Jones et al. Cancer Chemother Pharmacol 2010 [53]</td>
<td>OV 60 mg/m² d1,8,15 CAP 2000 mg/m²/d1-14, q3w</td>
<td>40</td>
<td>Post anthra and txn</td>
<td>20.0</td>
<td>62.5</td>
<td>3.4</td>
<td>11.3</td>
</tr>
<tr>
<td>Lorusso et al. Ann Oncol 2006 [54]</td>
<td>OV 60 mg/m² d1,8 CAP 2000 mg/m²/d2-7 and 9-16, q3w</td>
<td>38</td>
<td>Post anthra and txn</td>
<td>39.4</td>
<td>76.3</td>
<td>4.5</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Abbreviations: anthra, anthracycline; CBR, clinical benefit rate; NR, not reported; ORR, overall response rate; OS, overall survival; OV, oral vinorelbine; PFS, progression-free survival; q3w, every 3 weeks; TTP, time to progression; txn, taxane

Table 4
Phase III TRAVIOTA and HERNATA trials of first-line vinorelbine with HER2-targeted therapy [57,58]

<table>
<thead>
<tr>
<th>TRAVIOTA [57]</th>
<th>HERNATA [58]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxane/Tras</td>
<td>Docetaxel/Tras</td>
</tr>
<tr>
<td>N</td>
<td>40</td>
</tr>
<tr>
<td>ORR, %</td>
<td>40</td>
</tr>
<tr>
<td>CBR, %</td>
<td>58</td>
</tr>
<tr>
<td>Median TTP, months</td>
<td>6.0</td>
</tr>
<tr>
<td>Median TTF, months</td>
<td>4.7</td>
</tr>
<tr>
<td>Median OS, months</td>
<td>NR</td>
</tr>
</tbody>
</table>

Abbreviations: CBR, clinical benefit rate; HR, hazard ratio; NR, not reported; ORR, overall response rate; OS, overall survival; VNR, vinorelbine administered intravenously; TTP, time to progression; TTF, time to treatment failure; Tras, trastuzumab; VNR IV, vinorelbine administered intravenously
and increased antigen presentation through maturation of dendritic cells. Data also suggest direct targeting of tumor initiating cells or cancer stem cells [61] and inhibition of hypoxia-inducible factor 1 (HIF-1α) [68] as additional mechanisms of action for metronomic chemotherapy, as reviewed elsewhere [63,69]. There is significant crosstalk between these various mechanisms of action, providing a rationale for combinations of metronomic chemotherapy with targeted agents or immunotherapies [61].

Interestingly, preclinical data suggest tumors that acquire resistance to metronomic chemotherapy, such as low-dose cyclophosphamide, retain their sensitivity to MTD cyclophosphamide [61,70]. This is important because it suggests metronomic chemotherapy and MTD chemotherapy could essentially be thought of as two distinct drugs and development of resistance to one may not preclude the use of the same drug using an alternative dosing schedule. Moreover, metronomic chemotherapy may prevent or delay development of chemotherapy resistance [61]. In mouse models of ovarian cancer, intermittent administration of docetaxel resulted in significant upregulation of genes involved in docetaxel resistance, while continuous dosing did not upregulate these genes [71]. Further clinical studies are needed to fully understand the impact of metronomic chemotherapy on drug resistance.

Numerous phase II clinical trials have demonstrated activity for oral chemotherapeutic agents as metronomic monotherapy in patients with MBC (Table 5) [31,63,72–75]. First-line capecitabine, administered at standard doses or continuously, improved OS (22 vs 18 months; HR 0.72; P = 0.02) and was better tolerated than classical cyclophosphamide, methotrexate, and fluorouracil (CMF) in women with MBC unsuitable for more intensive chemotherapy regimens [31]. Another phase II study of metronomic capcitabine (1500 mg once a day) demonstrated a clinical benefit rate (CBR) of 62%, including activity in patients with heavily pretreated disease and those who had previously received standard dose capcitabine [72]. Metronomic capcitabine was well tolerated, with minimal grade 3 and no grade 4 adverse events reported. However, another phase II randomized noninferiority trial was unable to demonstrate noninferiority for continuous dosing of capcitabine at 800 mg/m² bid daily compared to standard dosing (1250 mg/m² bid days 1 to 14 every 21 days) with regards to disease progression at 1 year [73].

Metronomic oral vinorelbine has demonstrated promising activity and safety as a single agent. Phase I trials established the recommended dose for metronomic oral vinorelbine as 50 mg 3 times per week for 3 weeks on, 1 week off [76,77]. In a clinical trial of 34 elderly patients with MBC, first-line metronomic oral vinorelbine dosed at 70 mg/m² resulted in an objective response in 38% of patients and was associated with a disease control rate of 68% [74]. Median PFS and OS were 7.7 months and 15.9 months, respectively. This active regimen was also well tolerated with no grade 4 adverse events and few grade 3 events, the most common of which were neutropenia (9%), anemia (9%), and febrile infection (6%). A second study of metronomic oral vinorelbine (30 mg, one day on and one day off) in elderly patients with MBC demonstrated a CBR ≥6 months of 50% and a disease control rate of 87.4% [75]. Excellent tolerability was observed, with improved QoL after 6 months of therapy and no grade 3/4 adverse events reported. The ongoing phase II randomized TEMPO-Breast 01 trial is comparing standard dose oral vinorelbine to metronomic oral vinorelbine as first-line therapy in patients with hormone receptor–positive, HER2-negative MBC [78]. Trial results are expected in 2017.

Combination metronomic regimens have also demonstrated activity and excellent tolerability in MBC (Table 6) [63,79–92]. The first metronomic combination to be explored in the metastatic setting was cyclophosphamide plus methotrexate (CM) [63]. A
Table 6

Selected trials of metronomic oral chemotherapy combinations in advanced breast cancer [79,81,83–92]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Agents and schedule</th>
<th>N</th>
<th>Line of treatment</th>
<th>ORR, %</th>
<th>CBR, %</th>
<th>PFS/TTP, months</th>
<th>OS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colleoni et al. Ann Oncol 2002 [79]</td>
<td>Cyclophosphamide (50 mg/day continuously) + methotrexate (2.5 mg bid days 1 and 2 weekly)</td>
<td>63</td>
<td>1st or later</td>
<td>19.0</td>
<td>31.7</td>
<td>2.8</td>
<td>NR</td>
</tr>
<tr>
<td>Colleoni et al. Ann Oncol 2006 [81]</td>
<td>Cyclophosphamide (50 mg/day continuously) + methotrexate (2.5 mg bid days 1 and 4 weekly)</td>
<td>90</td>
<td>1st or later</td>
<td>20.9</td>
<td>41.5</td>
<td>3.8</td>
<td>18.2</td>
</tr>
<tr>
<td>VICTOR-1 Cazzaniga et al Int J Breast Cancer 2014 [83]</td>
<td>Vinorelbine (20–40 mg daily, d1,3,5 weekly) + capecitabine (500 mg tid continuously)</td>
<td>31</td>
<td>1st or later</td>
<td>16.1</td>
<td>58.1</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>VICTOR-2 Cazzaniga et al ABC1 2015 [84]</td>
<td>Vinorelbine (40 mg daily, d1,3,5 weekly) + capecitabine (500 mg tid continuously)</td>
<td>85</td>
<td>1st or later</td>
<td>NR</td>
<td>80</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>VEX trial Montagna et al Eur J Cancer 2015 [85]</td>
<td>Vinorelbine (40 mg daily, d1,3,5 weekly) + capecitabine (500 mg tid continuously) + cyclophosphamide (50 mg daily)</td>
<td>69</td>
<td>1st or later</td>
<td>30.4</td>
<td>78.3</td>
<td>22 for untreated patients; 14 for pretreated patients</td>
<td>NR</td>
</tr>
<tr>
<td>Addeo et al Cancer Chemother Pharmacol 2012 [86]</td>
<td>Vinorelbine (70 mg/m² daily, d1,3,5 weekly) + temozolomide (75 mg/m² d1-21 q4w)</td>
<td>36</td>
<td>1st or later, untreated brain mets</td>
<td>52</td>
<td>77</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Wang et al Cancer Chemother Pharmacol 2012 [87]</td>
<td>Cephalothin (1000 mg/m² bid) + cyclophosphamide (65 mg/m² daily) days 1-14 q3w</td>
<td>66</td>
<td>1st – 5th</td>
<td>30.3</td>
<td>53.0</td>
<td>5.2</td>
<td>16.9</td>
</tr>
<tr>
<td>Yoshimoto et al Cancer Chemother Pharmacol 2012 [88]</td>
<td>Cephalothin (828 mg/m² bid) + cyclophosphamide (33 mg/m² bid) days 1-14 q3w</td>
<td>45</td>
<td>1st or 2nd</td>
<td>44.4</td>
<td>57.8</td>
<td>12.3</td>
<td>Not reached</td>
</tr>
</tbody>
</table>

Combinations with targeted agents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Agents and schedule</th>
<th>N</th>
<th>Line of treatment</th>
<th>ORR, %</th>
<th>CBR, %</th>
<th>PFS/TTP, months</th>
<th>OS, months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlando BMC Cancer 2006 [89]</td>
<td>Cyclophosphamide (50 mg daily) + methotrexate (2.5 mg bid days 1 and 4 weekly) + trastuzumab (6 mg/kg q2w)</td>
<td>22</td>
<td>1st or later</td>
<td>18</td>
<td>46</td>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td>Dellapasqua et al J Clin Oncol 2008 [90]</td>
<td>Cephalothin (500 mg tid continuously) + cyclophosphamide (50 mg daily) + bevacizumab (10 mg/kg q2w)</td>
<td>46</td>
<td>1st or later</td>
<td>48</td>
<td>68</td>
<td>10.5</td>
<td>NR</td>
</tr>
<tr>
<td>Garcia-Saenz et al J Chemother 2008 [91]</td>
<td>Cyclophosphamide (50 mg daily) + methotrexate (1 mg/kg q2w) + bevacizumab (10 mg/kg q2w)</td>
<td>22</td>
<td>2nd or later</td>
<td>31.8</td>
<td>63.6</td>
<td>7.3</td>
<td>13.6</td>
</tr>
<tr>
<td>Saloustros et al J BUON 2011 [92]</td>
<td>Vinorelbine (50 mg 3 times a week) + bevacizumab (10 mg/kg q2w)</td>
<td>13</td>
<td>1st or later</td>
<td>7.7</td>
<td>53.8</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Abbreviations: bid; twice daily; CBR, clinical benefit rate; NR, not reported; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; q2w, every 2 weeks; q3w, every 3 weeks; q4w, every 4 weeks; tid, thrice daily; TTP, time to progression

The all-oral combination of metronomic vinorelbine and capcitabine has also demonstrated activity in MBC. The phase I/II VICTOR-1 trial examined vinorelbine (40 mg on days 1, 3, and 5 weekly) with capcitabine (500 mg thrice daily) in patients with MBC and demonstrated a response rate of 16.1% and a CBR of 58.1% [83]. The combination was well tolerated, with only 9 total grade 3/4 adverse events reported, consisting primarily of hematologic events, neuropathy, and hand-foot syndrome. The multicenter phase II VICTOR-2 study further examined the combination of metronomic oral vinorelbine and capcitabine in MBC, demonstrating a CBR of 80%, minimal grade 3/4 adverse events, and no deterioration of QoL [84].

In the phase II VEX trial, the combination of metronomic oral vinorelbine, cyclophosphamide, and capcitabine resulted in a CBR of 85% in previously untreated patients and 72% in pretreated patients with hormone receptor–positive MBC [85]. Only 4% of patients experienced a grade 3 adverse event (hand-foot syndrome, hemolytic toxicity, and liver toxicity) and no grade 4 events were reported. Ongoing phase II and phase III clinical trials are exploring metronomic oral capcitabine or vinorelbine, including in the neoadjuvant setting with endocrine therapy and as first-line maintenance therapy in patients with response or stable disease following initial chemotherapy [63]. Studies are also demonstrating efficacy for metronomic oral chemotherapy in combination with targeted therapies such as antiangiogenic agents (Table 6) [63,89–92].

Conclusions

Balancing efficacy and QoL is essential for patients with MBC [1,2]. Selection of chemotherapy, endocrine therapy, and targeted agents should be based on current treatment recommendations, clinical trial data, careful assessment of patient and disease characteristics, and very importantly, patient preferences. Sequential monotherapy is the preferred choice for the vast majority of patients who require chemotherapy. Optimal strategies for sequencing therapy...
are currently unknown. Chemotherapy should be continued until disease progression as long as it is well tolerated.

Within the landscape of treatment options, increased attention to patient preference and QoL favors the use of oral chemotherapy agents, such as capecitabine and oral vinorelbine [20]. These agents prolong disease control, provide good tolerability, and reduce the time and cost associated with treatment. However, patient education is fundamental to ensuring appropriate safe use of oral chemotherapeutic agents [20,23]. Oral chemotherapy is also a good option for maintenance treatment to prolong disease control. Metronomic chemotherapy provides multiple-targeted action against breast tumor progression [61]. The convenience and low cost of oral chemotherapeutic agents makes them ideal for metronomic dosing strategies [63]. Metronomic chemotherapy approaches, such as cyclophosphamide ± methotrexate, capcitabine, and oral vinorelbine, have demonstrated efficacy and excellent tolerability in phase II trials and can be considered for some patients with advanced disease [19,63]. Results from large, randomized clinical trials are needed to fully understand the optimal role and positioning for metronomic approaches in the management of patients with MBC.

Acknowledgements

The authors would like to thank Robert E. Coleman, MD, FRCP, FRCPCH, and Trystin Abair, PhD, for their assistance in drafting this manuscript and Trudy Grenon Stoddert, ELS, for editorial assistance and assistance preparing the manuscript for submission. Drs Coleman and Abair and Ms Grenon Stoddert were compensated by prIME Oncology.

Role of funding source

Support for this manuscript was provided by an educational grant from Pierre Fabre Medicament.

Conflict of interest statement

References

[84] Cazzaniga ME. Metronomic chemotherapy (CHT) combination of vinorelbin (VRL) and capecitabine (CAPE) in HER2-advanced breast cancer (ABC) patients (pts) does not impair Global QoL: First results of the VICTOR-2 study. Presented at: ABCS; November 5-7, 2015; Lisbon, Portugal. Abstract PO64.

Appendix

2014 Symposium Participants

Panel Chair
Fatima Cardoso, MD,
Champalimaud Clinical Center, Lisbon, Portugal

Scientific Committee
Marco Colleoni, MD,
European Institute of Oncology and International Breast Cancer Study Group,
Milan, Italy
Alessandra Gennari, MD, PhD,
Galliera Hospital, Genoa, Italy
Joseph Gligorov, MD, PhD,
APHP-Tenon, IUC-UPMC, Sorbonne University, Paris, France

Panel Members
Sonia del Barco, Spain
Thomas Edekling, Sweden
Hans Elkesdal, Norway
Luis Fein, Argentina
Yolanda Fernandez, Spain
Jindrich Finek, Czech Republic
Jesus Garcia Mata, Spain
Maria de la Luz Garcia Tinoco, Mexico
Joaquín Gavila, Spain
Patricia Gomez Pardo, Spain
Anne-Claire Hardy, France
Hassan Jaafar, United Arab Emirates
Mohammed Jaloudi, United Arab Emirates
Jacek Jassem, Poland
Ann Knop, Denmark
Krzysztof Kremienieccki, Poland
Sven Langkjer, Denmark
Nicola Maass, Germany
Jan Novotny, Sweden
Luboš Petruželka, Czech Republic
Fabio Puglisi, Italy
Stefano Rondinetti, Switzerland
Ahmed Saadeddin, Saudi Arabia
Pedro Sanchez-Rovira, Spain
Alexander Seryakov, Russia
Alejandro Silva, Mexico
Jean-Philippe Spano, France
Gosia Tuxen, Denmark
Pilar Zamora, Spain
Lyudmila Zhukova, Russia

2015 Symposium Participants

Faculty Chairs
Fatima Cardoso, MD,
Champalimaud Clinical Center, Lisbon, Portugal
Robert E Coleman, MD, FRCP,
University of Sheffield and prIME Oncology, Sheffield, United Kingdom

Faculty
Angelo Di Leo, MD, PhD,
Istituto Toscane Tumori, Hospital of Prato, Prato, Italy
Giulio Francia, PhD,
University of Texas at El Paso, El Paso, Texas, USA
Antonio Llombart, MD, PhD,
Hospital Universitario Arnau de Vilanova, Valencia, Spain

Attendees
Noemia Afonso, Portugal
Isabel Alvarez, Spain
Francisco Ayala, Spain
Miguel Barbosa, Portugal
Rupert Bartsch, Austria
Carmelo Bengala, Italy
Assia Bensalem, Algeria
Livio Blasi, Italy
Saul Campos, Mexico
Lena Carlsson, Nordic Area
Cesar Augusto Castillo, Argentina
Paulo Cortes, Portugal
Margarida Damasceno, Portugal
Johannes Ettl, Germany
Antonella Ferro, Italy
Eunice Garcia Alvarez, Mexico
Maria de la Luz Garcia Tinoco, Mexico
Helena Gervasio, Portugal
Miguel Gil, Spain
Carlos Hernandez Hernandez, Mexico
Erik Hugger Jakobsen, Nordic Area
Leena Kankaanranta, Nordic Area
Juan de la Haba, Spain
Aleksandra Lacko, Poland
Outi Lahdenperä, Nordic Area
Philippe Laplaige, France
Huiping Li, China
Ana Lluch, Spain
Sara López Tarruella, Spain
Nikolai Maas, Germany
Eduardo Martínez de Dueñas, Spain
Antonio Moreira, Portugal
Andreas Müller, Switzerland
Antonino Musolino, Italy
Eva Pérez, Spain
Thierry Petit, France
Katarina Petrková, Slovakia
Cesar Rodriguez, Spain
Alvaro Rodriguez Lescurue, Spain
Marcus Schmidt, Germany
Juan Alejandro Silva, Mexico
Stanislav Spanik, Slovakia
Joanna Streb, Poland
Tomas Svoboda, Czech Republic
Leea Tiainen, Nordic Area
Nikolay Zhukov, Russia
Jorge Raúl Zimerman, Argentina