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Abstract

There exist a long standing tension among determinations of the CKM matrix element |Vub| from various
(semi)leptonic B decay channels with varying significance of up to ∼ 3σ. An interesting possibility to ease this
tension is to allow for a right-handed contribution to the standard model left-handed weak current mediating the
b → u quark decay. Current bounds on such a contribution are fairly weak. We propose a new way to search for such
a right-handed current in semileptonic B → ρmeson decays. We describe a new variable that we propose, and discuss
the theoretical uncertainties. Especially we investigate the uncertainties and their correlations among all contributing
form factors with the assumed z-expansion for its shape, valid over the whole q2 range. Then we study the achievable
sensitivity both from the available Babar and Belle data sets, as well as from an anticipated 50 ab−1 at Belle II.

1. Introduction

In the determination of the Cabbibo-Kobayashi-
Maskawa (CKM) matrix element |Vub| a tension of al-
most 3σ persists between the extraction using leptonic,
inclusive and exclusive semileptonic decay channels al-
ready for a long time. A precise determination of this
quantity is crucial for testing the unitarity properties of
the CKM matrix and also for improving tests of the
Standard Model (SM), in particular to increase sensi-
tivity to New Physics (NP) in B0 − B̄0 mixing [1].

It is possible that this tension is related to not suf-
ficiently understood theoretical or experimental details,
and the larger dataset of Belle II may resolve this is-
sue. Another possibility which would ease this tension,
is to allow for a right-handed current [2, 3, 4]. For the
purpose of testing this Ansatz, we consider the effective
Lagrangian with only one new parameter εR,

Leff = −4GF√
2

VL
ub

(
ūγμPLb + εR ūγμPRb

)
(ν̄γμPL�) + h.c.,

(1)

Decay |Vub| × 103 εR dependence
B → π �ν̄ 3.23 ± 0.30 1 + εR
B → Xu�ν̄ 4.39 ± 0.21

√
1 + ε2R

B → τ ν̄τ 4.32 ± 0.42 1 − εR
Decay B × 104

B → ρ �ν̄ 1.97 ± 0.16 (q2 < 12 GeV2)
B → ω �ν̄ 0.61 ± 0.11 (q2 < 12 GeV2)

Table 1: The |Vub | measurements [9] used in the fit shown in Fig. 1
and their dependence on εR. The branching fractions are taken from
Ref. [10]

where PL,R = (1 ∓ γ5)/2. The SM is recovered as
εR → 0. The current measurements of |Vub| are sum-
marized in Table 1. We indicate their dependence on
εR in the simple cases. In case of a final state vector
meson this is not as easy, and it depends on the con-
sidered q2 interval. In the endpoint phase-space lim-
its q2 → 0, q2

max the axial-vector dominates and hence
we would have a simple 1 − εR dependence. However
such an extraction, similar to B → D(∗) [5], is currently
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Figure 1: The allowed |VL
ub | − εR regions. The black ellipse in the left (right) plot shows the result of a χ2 fit using the first three (four, excluding ω)

measurements in Table 1. The fainter ellipse in the right plot is the same as that in the left plot.

not performed, because only a partially integrated width
is experimentally determined, which mixes both vector
and axial(vector) in a non-trivial way. In [6] this limit
has been used with a |Vub| value extracted over the full
range of q2 assuming Standard Model (SM). This ex-
plains the differences in the εR dependence in compari-
son to our Fig. 1 and their conclusion. The experimental
|Vub| measurements do not need to be corrected for the
ρ lineshape, as initially suggested in [7]

Details about the used experimental measurements
can be found in [8]. The result of the χ2 fit for |VL

ub| − εR
without and with the B → ρ �ν̄ measurement are shown
in Fig. 1.

The results presented here base on the work [8]. In
Section 2 we derive the possible observables and dis-
cuss the form factors and their theoretical uncertainties
in Section 3. The numerical predictions for the observ-
ables are presented in Section 4 and these are included
for a global fit in the |VL

ub| − εR plane in Sect. 5.

2. Possible Observables

For obtaining maximal information about the param-
eter εR, we derive the fully differential four body decay
rate for the decay B → ρ[→ ππ]�ν̄. In order to describe
the right-handed admixture given by the Lagrangian in
Eq. (1), we need to replace in the matrix element the
vector (V) and the three axial-vector (A0,1,2) form fac-
tors via

V → (1 + εR) V , Ai → (1 − εR) Ai . (2)

With the additional assumption Im εR = 0 it can be done
directly in the decay rate. In this talk we focus only
on this case, further information on complex εR can be
found in the corresponding article [8].

The decay rate can be written in terms of four vari-
ables. Conventionally we choose three angles, which
describe the relative orientation of the final state parti-
cles. θV is the angle of the π+ in the ρ restframe with
respect to the ρ direction in the B restframe. Similarly,
θ� is the angle of the �− in the dilepton restframe with
respect to the direction of the virtual W− in the B rest-
frame. Finally χ is the angle between the decay planes
of the hadronic and leptonic systems in the B restframe.
Additionally we have the momentum transfer q2 to the
lepton system, while the invariant mass of the hadronic
system is fixed by examine the on-shell decay, only. The
fully differential rate, where the on-shell ρ meson is a
pure P-wave, for massless leptons is written as

dΓ
dq2 d cos θV d cos θ� dχ

=
G2

F |VL
ub|2m3

B

2π4

×
{
J1s sin2 θV + J1c cos2 θV

+ (J2s sin2 θV + J2c cos2 θV ) cos 2θ�
+ J3 sin2 θV sin2 θ� cos 2χ
+ J4 sin 2θV sin 2θ� cos χ + J5 sin 2θV sin θ� cos χ

+ J6s sin2 θV cos θ� + J7 sin 2θV sin θ� sin χ

+ J8 sin 2θV sin 2θ� sin χ + J9 sin2 θV sin2 θ� sin 2χ
}
.

(3)

Our convention for the ranges of the angular variables
are χ ∈ [0, 2π], θ� ∈ [0, π], θV ∈ [0, π].

A fully differential analysis in four-dimensions in or-
der to determine the Ji in bins of q2 is experimentally
challenging. In the following we propose to use observ-
ables in one, two and all three angles simultaneously.
As we have shown in [8], these amount to simple count-
ing experiments in different regions of phase space. All
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of these observables are constructed such that the de-
pendence on |Vub| drops out. To improve the statistical
precision, we integrate over a suitably chosen interval of
q2. Given the available constraints on the form factors,
we integrate over 0 ≤ q2 ≤ 12 GeV2 to balance between
experimental and theoretical uncertainties.

As we will see, it is important to estimate a reli-
able theoretical uncertainty for these observables. Es-
pecially the considered q2 region is sizable, and hence
we need to treat the uncertainties reliably in ratios of
binned quantities. We develop a model for the uncer-
tainties and correlations among the binned rates, using
available calculations of the form factors.

2.1. One- dimensional asymmetries
The forward-backward asymmetry of the charged

lepton is sensitive to the chiral structure of currents con-
tributing to a decay,

AFB =

∫ 0
−1 d cos θ�(dΓ/d cos θ�) −

∫ 1
0 d cos θ�(dΓ/d cos θ�)∫ 1

−1 d cos θ� (dΓ/d cos θ�)
.

(4)
We study the sensitivity of this variable to εR in Sec. 4,
after discussing the form factor inputs used. The one-
dimensional distributions in χ and θV are symmetric,
and hence it is not possible to construct asymmetry-type
observables with good sensitivity to εR from these one-
dimensional distributions.

2.2. Generalized Two- dimensional asymmetries
We found that if one integrates over one of the an-

gles and defines two distinct regions in the remaining
two angles, then integrating over χ results in the best
sensitivity. To optimize the sensitivity from this class of
measurements, we introduce new observables,

S =
A − B
A + B

, (5)

where A and B are the decay rates in two regions in
the {cos θ�, cos θV } parameter space, chosen such that
S 	 0 in the SM. This is a generalization of the forward-
backward asymmetry, which may have increased sen-
sitivity to εR. The optimal separation which discrimi-
nates between the two regions, A and B, depends on this
choice of the q2 range. Thus it is crucial to test the sen-
sitivity of the result to nonperturbative uncertainties.

2.3. Three-dimensional Asymmetries
The previous approaches have the limitations of not

allowing to chose the numerator and denominator arbi-
trarily in terms of the Ji functions, the extraction of the

full set of these coefficients is experimentally challeng-
ing. By allowing multiple regions in fairly large, π/2
size, bins , we can extract each individual Ji by consid-
ering generalized asymmetries in multiple regions of all
three angles. This method has been developed in [8]

Ji =
1
Ni

8∑
j=1

4∑
k,l=1

η
χ
i, j η
θ�
i,k η

θV
i,l

[
χ( j) ⊗ θ( j)

�
⊗ θ(k)

V

]
. (6)

Since some bin-boundaries need to be at half-integer
multiples of π/2, we use a notation where χ( j), θ( j)

�
and

θ(k)
V denote the 8 and 4 equal bins of size π/4, respec-

tively. The corresponding normalization factors Ni and
weighting factors ηχ,θi, j can be found in [8]. Using this,
we investigate the sensitivity of arbitrary ratios of the
Ji in the following. This can be used for the extraction
of observables in B → K∗�� in the same way, and in
analogy with Ref. [15, 16, 17], we define

〈P1〉bin =
1
2

∫
Δq2 dq2J3∫
Δq2 dq2J2s

, (7)

〈P′5〉bin =
1
2

∫
Δq2 dq2J5√

− ∫
Δq2 dq2J2s

∫
Δq2 dq2J2c

, (8)

which are, taking into account theoretical uncertain-
ties, the most sensitive observables to a possible right-
handed current. Furthermore, we find that we get best
sensitivity for simple ratios, defined as

〈Pi, j〉bin =

∫
Δq2 dq2Ji∫
Δq2 dq2J j

. (9)

In particular, coefficients which depend on all three an-
gles have good sensitivities, 〈P3,4〉, 〈P3,5〉, and 〈P5,4〉.

3. Form Factor Fit

We use a series expansion, also known as the z ex-
pansion, to describe the form factor shape over the full
range of the dilepton invariant mass [18]. In this paper
we expand the form factors directly, instead of the he-
licity amplitudes. The series expansion uses unitarity
to constrain the shape of the form factors, and implies
a simple and well-motivated analytic parameterization
over the full range of q2. Defining q2± = (mB ±mρ)2, the
form factors are written as

V(q2) =
1

BV (q2)ΦV (q2)

K∑
k=0

αV
k z(q2, q2

0)k ,

Ai(q2) =
1

BAi (q2)ΦAi (q2)

K∑
k=0

αAi
k z(q2, q2

0)k , (10)
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and the real q2 axis is mapped onto the unit circle

z(q2, q2
0) =

√
q2
+ − q2 −

√
q2
+ − q2

0√
q2
+ − q2 +

√
q2
+ − q2

0

. (11)

The free parameter q2
0 is chosen as q2

0 = (mB +

mρ) (
√

mB − √mρ)2, so that for the physical q2 range
of B → ρ�ν̄ decay the expansion parameter is min-
imal, |z(q2, q2

0)| � 0.1. The so-called Blaschke fac-
tors in Eq. (10) for each form factor are BF(q2) ≡∏

RF
z(q2, m2

RF
) , where RF are the sub-threshold res-

onances (q2− < m2
RF
< q2

+) with the quantum num-
bers appropriate for each form factor. By construction,
BF(m2

RF
) = 0 and |BF(q2)| = 1 for q2 > q2

+. The main
shape information is given by the functions [18]

ΦF(q2) =

√
1

32πχF(n)
q2 − q2

+

(q2
+ − q2

0)1/4

[
z(q2, 0)
−q2

](n+3)/2

×
⎡⎢⎢⎢⎢⎣ z(q2, q2

0)

q2
0 − q2

⎤⎥⎥⎥⎥⎦−1/2 [
z(q2, q2−)
q2− − q2

]−3/4

. (12)

The only form factor dependent quantity is χF(n), which
is related to the polarization tensor Πμν(q2) at q2 = 0,
and n is the number of derivatives (subtractions) neces-
sary to render the dispersion relation finite. This func-
tion is calculable in an operator product expansion. For
the longitudinal part, involving A0, one subtraction is
necessary, while for the transverse part of the vector and
axialvector current, involving the form factors A1, A2,
and V , two subtractions are needed [18].

3.1. Correlation assumptions for the form factors
Unfortunately correlation information are currently

not available from either lattice QCD or model calcula-
tions. We estimate these correlations in the light-cone
QCD sum rule (LCSR) results [11, 19]. We distin-
guish two different kinds of correlations, (i) correlations
among the different form factors at the same value of q2;
and (ii) correlations between different values of q2, for
the same form factors.

In Ref. [11], the uncertainties at q2 = 0 are grouped
into four sources, presumed uncorrelated: Δ7P, Δmb , ΔL,
and ΔT . The values evaluated for q2 = 0 are used in
the following as an estimate of the uncertainties over a
larger range of q2. We investigate the individual contri-
butions to these uncertainties and estimate the correla-
tion among the form factors.

From these considerations, we can assess the corre-
lated uncertainties in each contribution. In the follow-
ing a model is tested to predict the correlations between

the form factors. For this model, according to the list
above, the correlations between the Ai, and between
the Ai and V are assumed to be

{
ρAi

7P, ρ
Ai
mb , ρ

Ai
L , ρ

Ai
T
}
={

ρV,Ai
7P , ρ

V,Ai
mb , ρ

V,Ai
L , ρ

V,Ai
T

}
= {0.6, 1.0, 1.0, 1.0}. A full

calculation of the form factors and the complete deter-
mination of the correlations is beyond the scope of this
paper. Hence our estimate relies on the results given in
that paper, and on our assumptions. This results in the
correlation matrix for {V, A0, A1, A2} given by

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1. 0.65 0.71 0.72

0.65 1. 0.64 0.62
0.71 0.64 1. 0.72
0.72 0.62 0.72 1.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13)

This estimate is derived at q2 = 0, and we use it for
q2 > 0 as well. Because of the constraints on the shapes
of the form factors, no large change is expected far from
maximal q2.

The form factors at different values of q2 are obtained
from the same sum rule, however, the various contri-
butions are weighted differently by q2. For values of
q2 farther from one another, the correlation should de-
crease. Using the leading order results of [11], we found
that the correlation for different values of q2 only mildly
depends on the separation, which we use below. Thus,
uncertainties of a given form factor, Ai or V , for differ-
ent q2 are estimated to be 80% correlated, and we use a
1 GeV2 binning in our analysis).

3.2. The χ2 fit for the SE parameters
A simultaneous χ2 fit to all sum rule points of

Ref. [11] assuming the discussed correlations is per-
formed. We verified the central values and uncertainties
of the fit with ensembles of pseudo-experiments. The fit
results can be found in [8].

The LCSR calculation result of the form factors is
valid only for small q2. However, the form factor shape
changes by less than 1% when fitted in the region q2 <
7 GeV2 or q2 < 14 GeV2 [11]. Since the measurements
in Ref. [10] are in 4 GeV bins, we restrict ourselves to
fitting the data in the range q2 < 12 GeV2 to balance
between statistical sensitivity and theoretical validity.

4. Numerical Predictions of the Observables

In the following the theoretical predictions using the
form factor input and uncertainties from the last sec-
tion are discussed. The achievable sensitivity of the
observables is estimated for 1 ab−1 and 50 ab−1 of inte-
grated luminosity, corresponding to the available BABAR

and Belle data sets and the anticipated Belle II data. The
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treatment of their expected systematic and statistical un-
certainty for the Neyman belt construction is explained
in [8]. Experimental and theoretical uncertainties are
assumed to be independent, and addition in quadrature
is used to combine them. The sensitivity to a possible
right-handed admixture is assessed by the interception
of the uncertainty bands with the predicted SM value.
In practice, every experiment will have to properly take
into account all uncertainties for each value of εR.

4.1. Forward-backward asymmetry and the two-
dimensional asymmetry, S

The prediction of AFB including uncertainty estimates
are shown in the left panel of Fig. 2. The central value
is indicated by dotted lines and the blue band shows
the theory uncertainty, as derived in the previous sec-
tion. The red and green band show the total uncertain-
ties for 1 ab−1 and 50 ab−1 of integrated luminosity, and
the dashed vertical lines show the expected sensitivities
assuming the SM. The theoretical and experimental un-
certainties for 1 ab−1 integrated luminosity are expected
to be of similar size. For 50 ab−1 integrated luminos-
ity the dominant uncertainty will come from the B → ρ
form factor.

The generalized two-dimensional asymmetry, S , re-
quires to find a non-trivial dividing curve to define two
distinct regions. The optimal contour in terms of sensi-
tivity to right-handed admixtures is devised in [8]. The
resulting curve most sensitive for εR, separating regions
A and B, can be numerically approximated by

cos θV = ±
√

0.8472 cos2 θ� + 1.9038 cos θ� + 0.8472
−1.1484 cos2 θ� + 1.9038 cos θ� + 2.8429

.

(14)
This choice depends on nonperturbative input quantities
as well as the considered q2 interval.

The Neyman belt of S and sensitivities are shown in
Fig. 2, the theoretical uncertainties are larger than for
AFB. The overall sensitivity on NP for 1 ab−1 of in-
tegrated luminosity, however, is better due to the in-
creased dependence on εR, and for 50 ab−1 of data the
sensitivity is comparable.

4.2. Simple generalized ratios

We have given a set of simple generalized observ-
ables, Pi, in Eq. (7-9), from which one expects the best
theoretical sensitivity. The most sensitive observables
in the context of real right-handed currents, are 〈P1〉,
〈P′5〉 and 〈P5,4〉. The corresponding predictions and sen-
sitivities are shown in Fig. 3. The statistical correla-
tions between the numerator and denominator in the

observables was estimated using Monte Carlo methods,
neglecting any influence from background. The three-
dimensional observables reduce the theoretical uncer-
tainties with respect to the one-dimensional or two-
dimensional asymmetries. Their experimental uncer-
tainties, however, are larger due to the great number
of free parameters that need to be determined from the
same data. The most precise observable for 1 ab−1 of
integrated luminosity is 〈P5,4〉.

5. Global Fit

The estimated sensitivities on εR in the previous sec-
tion can be used to add an orthogonal constraint to the
global fit performed in Section 1. The gain in overall
sensitivity on |VL

ub| and εR is estimated by extrapolating
the experimental uncertainties to 1 ab−1 and 50 ab−1.

Fig. 4 shows the results for the simultaneous fit for
|VL

ub| and εR for integrated luminosities of 1 ab−1 and
50 ab−1. The fits incorporate the expected constraints
from either AFB, S , or P′5,4 in the absence of right-
handed currents. For the 1 ab−1 scenario, the current
experimental central values are used for |Vub|, whereas
for 50 ab−1 the SM is assumed, with identical |Vub| from
all channels. For 1 ab−1 B-factory data, S results in
the largest gain in sensitivity for right-handed currents
among the studied observables. Table 2 lists the reduc-
tion of the uncertainty of |VL

ub| and εR with respect to a fit
without any additional orthogonal bound. Although the
theoretical uncertainties on S are more sizable than on
P′5,4, the experimental simplicity of the two-dimensional
asymmetry results in the best overall expected sensi-
tivity. The reduction in experimental uncertainties for
50 ab−1 statistics changes this picture: here the theoret-
ical uncertainties on the B → ρ form factors dominate
the overall uncertainty of all observables and P′5,4 results
in the best expected sensitivity.

Fit δ
(∣∣∣VL

ub

∣∣∣) [%] δ (εR) [%]
4 modes + AFB (1 ab−1) −0.3 −5
4 modes + S (1 ab−1) −0.5 −9

4 modes + P5,4 (1 ab−1) −0.5 −8
4 modes + AFB (50 ab−1) −0.4 −2
4 modes + S (50 ab−1) −0.5 −2

4 modes + P5,4 (50 ab−1) −3 −10

Table 2: The expected relative reduction in the uncertainty of
∣∣∣VL

ub

∣∣∣ and
εR for the χ2 fits in Figs. 4. The improvements are quoted with respect
to the expected uncertainties on the 4-mode analysis for 1 ab−1 and 50
ab−1, which are Δ

(∣∣∣VL
ub

∣∣∣ × 103,ΔεR
)
= (0.18, 0.061) and (0.06, 0.016),

respectively.
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Figure 2: Predictions for the forward-backward asymmetry (left) and S (right), including theoretical uncertainties (blue band), and theory and
experimental uncertainties combined in quadrature for 50 ab−1 (orange) and 1 ab−1 (green).

Figure 3: The most sensitive angular observables to Re εR. The blue bands show the theoretical uncertainties, while the orange [dark-green] bands
show theory and experimental uncertainties combined in quadrature, for 50 ab−1 [1 ab−1] of B-factory data. The observables, 〈P1〉 (left), 〈P′5〉
(center), 〈P5,4〉 (right), are defined in Eqs. (7)–(9).

6. Discussion and Conclusions

In this talk, the full decay distribution in semileptonic
B → ρ[→ ππ]�ν̄ decay was analyzed to explore the con-
sequences of a possible right-handed semileptonic cur-
rent from physics beyond the Standard Model. A num-
ber of observables was explored, some new and some
defined in the literature. We performed a detailed inves-
tigation of the impact of the theoretical uncertainties,
using a model for the correlations, on the sensitivity.

To set a bound on this beyond Standard Model con-
tribution, two approaches are possible: (i) a full four-
dimensional fit for the Ji coefficients or counting ex-
periments that involve determining the partial branching
fraction in several regions of phase space and combin-
ing this information appropriately to project out either
the Ji coefficients, or (ii) to construct asymmetries sen-
sitive to NP contributions in two distinct phase-space
regions. The latter offer an obvious alternative, since
with the currently available B-factory data, a full four-
dimensional fit appears to be a very challenging en-
deavor.

The discussed observables exhibit very different theo-
retical and experimental uncertainties: besides the usual
forward-backward asymmetry, a two-dimensional gen-
eralized asymmetry is proposed by integrating out one

of the decay angles form the fully differential decay rate.
These two are experimentally the simplest observables.
A set of generalized three-dimensional observables is
discussed. These are experimentally more challenging,
and the eventual observables involve ratios of statisti-
cally and systematically correlated observables.

A ranking in terms of sensitivity reveals that the bal-
ance of experimental and theoretical uncertainties is im-
portant: for the available B-factory statistics of about
1 ab−1, the two dimensional asymmetry S with its sim-
ple experimental definition seems to be the most sensi-
tive to the presence of right-handed currents. For the
anticipated 50 ab−1 Belle II statistics, the more compli-
cated three-dimensional observables result in the best
expected sensitivity due to the reduction of experimen-
tal uncertainties. A direct determination of εR allows to
introduce an orthogonal constraint into the indirect de-
termination involving |Vub| measurements from various
decays with different εR dependencies. Including the
most sensitive direct εR constraint for 1 ab−1 or 50 ab−1,
reduces the uncertainty of εR by about 10% in such a
global analysis. This implies that even with the cur-
rent B-factory datasets a useful statement about εR from
B → ρ�ν can be obtained.

ST thanks the organizers of ICHEP 2014 for host-
ing the conference and giving me the opportunity to
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Figure 4: The χ2 fits for |VL
ub | and εR assuming 1 ab−1 (left) and 50 ab−1 (right) of B-factory data. The green bands show the B → ρ�ν̄ information,

c.f., Fig. 1. The observable used for the expected orthogonal bound on εR, assuming the SM, is shown in each Figure. Table 2 lists the improvement
in uncertainty by including the orthogonal constraint from the discussed observable on εR with respect to the uncertainty of fitting the experimental
information available by B → Xu�ν̄, B → τν̄, B → π�ν̄, and B → ρ�ν̄ only.
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